
Improving Numerical Integration and Event Generation
with Normalizing Flows

— Physics Seminar, University at Buffalo —

Claudius Krause

Fermi National Accelerator Laboratory

October 8, 2019

In collaboration with: Christina Gao, Stefan Höche, Joshua Isaacson
arXiv: 191x.abcde

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 1 / 27

Monte Carlo Simulations are increasingly important.

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults

⇒ MC event generation is needed for signal and background predictions.

⇒ The required CPU time will increase in the next years.

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 2 / 27

Monte Carlo Simulations are increasingly important.

0 1 2 3 4 5 6 7 8 9
Njet

10−1

100

101

102

103

104

105

106

C
P

U
h
/M

ev
t

Sh
er

pa
/P

yt
hi

a
+

D
IY

@
N

E
R

SC

W++jets, LHC@14TeV

pT,j > 20GeV, |ηj| < 6

WTA (> 6j)

parton level

particle level

particle level

0 50000 100000 150000 200000 250000 300000
Ntrials

10−9

10−8

10−7

10−6

10−5

10−4

10−3

F
re

q
u

en
cy

S
h

er
p

a
M

C
@

N
E

R
S

C

W+0j

W+1j

W+2j

W+3j

W+4j

W+5j

W+6j

W+7j

W+8j

W+9j

Stefan Höche, Stefan Prestel, Holger Schulz [1905.05120;PRD]

The bottlenecks for evaluating large final state multiplicities are

a slow evaluation of the matrix element

a low unweighting efficiency

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 3 / 27

Monte Carlo Simulations are increasingly important.

0 1 2 3 4 5 6 7 8 9
Njet

10−1

100

101

102

103

104

105

106

C
P

U
h
/M

ev
t

Sh
er

pa
/P

yt
hi

a
+

D
IY

@
N

E
R

SC

W++jets, LHC@14TeV

pT,j > 20GeV, |ηj| < 6

WTA (> 6j)

parton level

particle level

particle level

0 50000 100000 150000 200000 250000 300000
Ntrials

10−9

10−8

10−7

10−6

10−5

10−4

10−3

F
re

q
u

en
cy

S
h

er
p

a
M

C
@

N
E

R
S

C

W+0j

W+1j

W+2j

W+3j

W+4j

W+5j

W+6j

W+7j

W+8j

W+9j

Stefan Höche, Stefan Prestel, Holger Schulz [1905.05120;PRD]

The bottlenecks for evaluating large final state multiplicities are

a slow evaluation of the matrix element

a low unweighting efficiency

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 3 / 27

Improving Numerical Integration and Event Generation
with Normalizing Flows

Part I: The “traditional” approach

Part II: The Machine Learning approach

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 4 / 27

I: There are two problems to be solved. . .

f (~x)

⇒ F =

∫
f (~x) dDx

dσ(pi , ϑi , ϕi)

⇒ σ =

∫
dσ(pi , ϑi , ϕi), D = 3nfinal − 4

Given a distribution f (~x), how can we sample according to it?

?
=⇒

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 5 / 27

I: There are two problems to be solved. . .

f (~x) ⇒ F =

∫
f (~x) dDx

dσ(pi , ϑi , ϕi) ⇒ σ =

∫
dσ(pi , ϑi , ϕi), D = 3nfinal − 4

Given a distribution f (~x), how can we sample according to it?

?
=⇒

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 5 / 27

I: There are two problems to be solved. . .

f (~x) ⇒ F =

∫
f (~x) dDx

dσ(pi , ϑi , ϕi) ⇒ σ =

∫
dσ(pi , ϑi , ϕi), D = 3nfinal − 4

Given a distribution f (~x), how can we sample according to it?

?
=⇒

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 5 / 27

I: . . . but they are closely related.

1 Starting from a pdf, . . .

2 . . . we can integrate it and find its cdf, . . .

3 . . . to finally use its inverse to transform a uniform distribution.

⇒

1

⇒

2 3

⇒ We need a fast and effective numerical integration!

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 6 / 27

I: . . . but they are closely related.

1 Starting from a pdf, . . .

2 . . . we can integrate it and find its cdf, . . .

3 . . . to finally use its inverse to transform a uniform distribution.

⇒

1

⇒

2 3

⇒ We need a fast and effective numerical integration!

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 6 / 27

I: Importance Sampling is very efficient for
high-dimensional integration.

∫ 1

0

f (x) dx
MC−−→ 1

N

∑
i

f (xi) xi . . . uniform

=

∫ 1

0

f (x)

q(x)
q(x)dx

MC−−−−−−−−−−−−→
importance sampling

1

N

∑
i

f (xi)

q(xi)
xi . . . q(x)

We therefore have to find a q(x) that
approximates the shape of f (x).

is “easy” enough such that we can sample from its inverse cdf.

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 7 / 27

I: Importance Sampling is very efficient for
high-dimensional integration.

∫ 1

0

f (x) dx
MC−−→ 1

N

∑
i

f (xi) xi . . . uniform

=

∫ 1

0

f (x)

q(x)
q(x)dx

MC−−−−−−−−−−−−→
importance sampling

1

N

∑
i

f (xi)

q(xi)
xi . . . q(x)

We therefore have to find a q(x) that
approximates the shape of f (x).

is “easy” enough such that we can sample from its inverse cdf.

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 7 / 27

I: The unweighting efficiency measures the quality
of the approximation q(x).

If q(x) were constant, each event xi would require a weight of f (xi) to
reproduce the distribution of f (x). ⇒ “Weighted Events”

To unweight, we need to accept/reject each event with probability
f (xi)

max f (x) . The resulting set of kept events is unweighted and reproduces

the shape of f (x).

If q(x) ∝ f (x), all events would have the same weight as the
distribution reproduces f (x) directly.

We define the Unweighting Efficiency = # accepted events
all events = mean w

max w ,

with wi = p(xi)
q(xi)

= f (xi)
Fq(xi)

.

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 8 / 27

I: The unweighting efficiency measures the quality
of the approximation q(x).

If q(x) were constant, each event xi would require a weight of f (xi) to
reproduce the distribution of f (x). ⇒ “Weighted Events”

To unweight, we need to accept/reject each event with probability
f (xi)

max f (x) . The resulting set of kept events is unweighted and reproduces

the shape of f (x).

If q(x) ∝ f (x), all events would have the same weight as the
distribution reproduces f (x) directly.

We define the Unweighting Efficiency = # accepted events
all events = mean w

max w ,

with wi = p(xi)
q(xi)

= f (xi)
Fq(xi)

.

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 8 / 27

I: The unweighting efficiency measures the quality
of the approximation q(x).

If q(x) were constant, each event xi would require a weight of f (xi) to
reproduce the distribution of f (x). ⇒ “Weighted Events”

To unweight, we need to accept/reject each event with probability
f (xi)

max f (x) . The resulting set of kept events is unweighted and reproduces

the shape of f (x).

If q(x) ∝ f (x), all events would have the same weight as the
distribution reproduces f (x) directly.

We define the Unweighting Efficiency = # accepted events
all events = mean w

max w ,

with wi = p(xi)
q(xi)

= f (xi)
Fq(xi)

.

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 8 / 27

I: The VEGAS algorithm is very efficient.

The VEGAS algorithm
assumes the integrand factorizes and bins the 1-dim projection.

then adapts the bin edges such that area of each bin is the same.

Peter Lepage 1980

=⇒

It does have problems if the features are
not aligned with the coordinate axes.

The current python implementation also uses
stratified sampling.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 9 / 27

I: The VEGAS algorithm is very efficient.

The VEGAS algorithm
assumes the integrand factorizes and bins the 1-dim projection.

then adapts the bin edges such that area of each bin is the same.

Peter Lepage 1980

=⇒

It does have problems if the features are
not aligned with the coordinate axes.

The current python implementation also uses
stratified sampling.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 9 / 27

Improving Numerical Integration and Event Generation
with Normalizing Flows

Part I: The “traditional” approach

Part II: The Machine Learning approach

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 10 / 27

Part II: The Machine Learning approach

Part II.1: Neural Network Basics

Part II.2: Numerical Integration
with Neural Networks

Part II.3: Examples

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 11 / 27

II.1: Neural Networks are nonlinear functions,
inspired by the human brain.

Each neuron transforms the input with a weight W and a bias ~b.

W ~x + ~b

x0

xi

xn

σ(W ~x + b)

The activation function σ makes it nonlinear.

“rectified linear unit (relu)” “leaky relu” “sigmoid”

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 12 / 27

II.1: The Loss function quantifies our goal.

We have different choices:
Kullback-Leibler (KL) divergence:

DKL =
∫
p(x) log p(x)

q(x)dx ≈ 1
N

∑ p(xi)
q(xi)

log p(xi)
q(xi)

, xi . . . q(x)

Pearson χ2 divergence:

Dχ2 =
∫ (p(x)−q(x))2

q(x) dx ≈ 1
N

∑ p(xi)
2

q(xi)2 − 1, xi . . . q(x)

They give the gradient that is needed for the optimization:

∇θD(KL or χ2) ≈ −
1

N

∑(
p(xi)

q(xi)

)(1 or 2)

∇θ log q(xi), xi . . . q(x)

We use the ADAM optimizer for stochastic gradient descent:

The learning rate for each parameter is adapted separately, but based
on previous iterations.

This is effective for sparse and noisy functions. Kingma/Ba [arXiv:1412.6980]

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 13 / 27

Part II: The Machine Learning approach

Part II.1: Neural Network Basics

Part II.2: Numerical Integration
with Neural Networks

Part II.3: Examples

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 14 / 27

II.2: Using the NN as coordinate transform is too
costly.

We could use the NN as nonlinear coordinate transform:

We use a deep NN with ndim nodes in the first and last layer to map a
uniformly distributed x to a target q(x).

The distribution induced by the map y(x) (=NN) is given by the
Jacobian of the map:

q(y) = q(y(x)) =
∣∣∣∂y
∂x

∣∣∣−1

Jacobian−−−−→

Klimek/Perelstein [arXiv:1810.11509]

y = x2 ∣∣∣∂y
∂x

∣∣∣−1

= 1
2x

⇒ The Jacobian is needed to evaluate the loss, the integral, and to sample.
However, it scales as O(n3) and is too costly for high-dimensional integrals!

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 15 / 27

II.2: Using the NN as coordinate transform is too
costly.

We could use the NN as nonlinear coordinate transform:

We use a deep NN with ndim nodes in the first and last layer to map a
uniformly distributed x to a target q(x).

The distribution induced by the map y(x) (=NN) is given by the
Jacobian of the map:

q(y) = q(y(x)) =
∣∣∣∂y
∂x

∣∣∣−1

Jacobian−−−−→

Klimek/Perelstein [arXiv:1810.11509]

y = x2 ∣∣∣∂y
∂x

∣∣∣−1

= 1
2x

⇒ The Jacobian is needed to evaluate the loss, the integral, and to sample.
However, it scales as O(n3) and is too costly for high-dimensional integrals!

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 15 / 27

II.2: Normalizing Flows are numerically cheaper.

A Normalizing Flow:

is a bijective, smooth mapping between two statistical distributions.

is composed of a series of easy transformations, the “Coupling Layers”.

is still flexible enough to learn complicated distributions.

⇒ The NN does not learn the transformation, but the parameters of a se-
ries of easy transformations.

The idea was introduced as “Nonlinear Independent Component
Estimation” (NICE) in Dinh et al. [arXiv:1410.8516].

In Rezende/Mohamed [arXiv:1505.05770], Normalizing Flows were first
discussed with planar and radial flows.

Our approach follows the ideas of Müller et al. [arXiv:1808.03856],
but with the modifications of Durkan et al. [arXiv:1906.04032].

Our code uses TensorFlow 2.0, www.tensorflow.org.

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 16 / 27

II.2: Normalizing Flows are numerically cheaper.

A Normalizing Flow:

is a bijective, smooth mapping between two statistical distributions.

is composed of a series of easy transformations, the “Coupling Layers”.

is still flexible enough to learn complicated distributions.

⇒ The NN does not learn the transformation, but the parameters of a se-
ries of easy transformations.

The idea was introduced as “Nonlinear Independent Component
Estimation” (NICE) in Dinh et al. [arXiv:1410.8516].

In Rezende/Mohamed [arXiv:1505.05770], Normalizing Flows were first
discussed with planar and radial flows.

Our approach follows the ideas of Müller et al. [arXiv:1808.03856],
but with the modifications of Durkan et al. [arXiv:1906.04032].

Our code uses TensorFlow 2.0, www.tensorflow.org.

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 16 / 27

II.2: The Coupling Layer is the fundamental
Building Block.

NN permutation

xA

xB

yx

C (xB ;m(xA))

forward:
yA = xA

yB,i = C (xB,i ;m(xA))

inverse:
xA = yA

xB,i = C−1(yB,i ;m(xA))

The C are numerically cheap, invertible, and
separable in xB,i .

Jacobian:∣∣∣∣∂y∂x
∣∣∣∣ =

∣∣∣∣1 ∂C
∂xA

0 ∂C
∂xB

∣∣∣∣ = Πi
∂C (xB,i ;m(xA))

∂xB,i

⇒ O(n)

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 17 / 27

II.2: The Coupling Function is a piecewise
approximation to the cdf.

piecewise linear coupling function:

The NN predicts the pdf bin heights Qi .

pdf cdf

Müller et al. [arXiv:1808.03856]

C =
b−1∑
k=1

Qk + αQb

α = x−(b−1)w
w∣∣∣∣ ∂C∂xB

∣∣∣∣ = Πi
Qbi

w

rational quadratic spline coupling function:

The NN predicts the cdf bin widths, heights, and derivatives that go in ai &bi .

cdf

Durkan et al. [arXiv:1906.04032]

Gregory/Delbourgo [IMA Journal of Numerical Analysis, ’82]

C =
a2α

2 + a1α + a0

b2α2 + b1α + b0

still rather easy

more flexible

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 18 / 27

II.2: The Coupling Function is a piecewise
approximation to the cdf.

piecewise linear coupling function:

The NN predicts the pdf bin heights Qi .

pdf cdf

Müller et al. [arXiv:1808.03856]

C =
b−1∑
k=1

Qk + αQb

α = x−(b−1)w
w∣∣∣∣ ∂C∂xB

∣∣∣∣ = Πi
Qbi

w

rational quadratic spline coupling function:

The NN predicts the cdf bin widths, heights, and derivatives that go in ai &bi .

cdf

Durkan et al. [arXiv:1906.04032]

Gregory/Delbourgo [IMA Journal of Numerical Analysis, ’82]

C =
a2α

2 + a1α + a0

b2α2 + b1α + b0

still rather easy

more flexible

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 18 / 27

II.2: The Coupling Function is a piecewise
approximation to the cdf.

piecewise linear coupling function:

The NN predicts the pdf bin heights Qi .

pdf cdf

Müller et al. [arXiv:1808.03856]

C =
b−1∑
k=1

Qk + αQb

α = x−(b−1)w
w∣∣∣∣ ∂C∂xB

∣∣∣∣ = Πi
Qbi

w

rational quadratic spline coupling function:

The NN predicts the cdf bin widths, heights, and derivatives that go in ai &bi .

cdf

Durkan et al. [arXiv:1906.04032]

Gregory/Delbourgo [IMA Journal of Numerical Analysis, ’82]

C =
a2α

2 + a1α + a0

b2α2 + b1α + b0

still rather easy

more flexible

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 18 / 27

II.2: We need O(log n) Coupling Layers.

How many Coupling Layers do we need?

Enough to learn all correlations between the variables.

As few as possible to have a fast code.

This depends on the applied permutations and the xA − xB -splitting:
(pppttt)↔(tttppp) vs. (pppptt)↔(ppttpp)↔(ttpppp)

More pass-through dimensions (p) means more points required for
accurate loss.

Fewer pass-through dimensions means more CLs needed.

For #p ≈ #t, we can prove: 4 ≤ #CLs ≤ 2 log2 ndim

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 19 / 27

II.2: We utilize different NN architectures.

Available Architectures:
“Fully Connected” Neural Net (NN):

Input Layer

Dense Layer with 64 nodes

Dense Layer with 64 nodes

Dense Layer with 64 nodes

Dense Layer with 64 nodes

Dense Layer with 64 nodes

Dense Layer with 64 nodes

Output Layer

“U-shaped” Neural Net (Unet):

Input Layer

Dense Layer with 128 nodes

Dense Layer with 64 nodes

DL w/ 32 nodes

DL w/ 32 nodes

Dense Layer with 64 nodes

Dense Layer with 128 nodes

Output Layer

Müller et al. [arXiv:1808.03856]

There are different ways to encode the input dimensions xA.
For example xA = (0.2, 0.7):

direct: xi = (0.2, 0.7)

one-hot (8 bins): xi = ((0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0))

one-blob (8 bins): xi = ((0.55, 0.99, 0.67, 0.16, 0.01, 0, 0, 0),
(0, 0, 0.01, 0.11, 0.55, 0.99, 0.67, 0.16))

Müller et al. [arXiv:1808.03856]

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 20 / 27

II.2: We utilize different NN architectures.

Available Architectures:
“Fully Connected” Neural Net (NN):

Input Layer

Dense Layer with 64 nodes

Dense Layer with 64 nodes

Dense Layer with 64 nodes

Dense Layer with 64 nodes

Dense Layer with 64 nodes

Dense Layer with 64 nodes

Output Layer

“U-shaped” Neural Net (Unet):

Input Layer

Dense Layer with 128 nodes

Dense Layer with 64 nodes

DL w/ 32 nodes

DL w/ 32 nodes

Dense Layer with 64 nodes

Dense Layer with 128 nodes

Output Layer

Müller et al. [arXiv:1808.03856]

There are different ways to encode the input dimensions xA.
For example xA = (0.2, 0.7):

direct: xi = (0.2, 0.7)

one-hot (8 bins): xi = ((0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0))

one-blob (8 bins): xi = ((0.55, 0.99, 0.67, 0.16, 0.01, 0, 0, 0),
(0, 0, 0.01, 0.11, 0.55, 0.99, 0.67, 0.16))

Müller et al. [arXiv:1808.03856]

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 20 / 27

Part II: The Machine Learning approach

Part II.1: Neural Network Basics

Part II.2: Numerical Integration
with Neural Networks

Part II.3: Examples

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 21 / 27

II.3: The 4-d Camel function illustrates the
learning of the NN.

Our test function: 2 Gaussian peaks, randomly placed in a 4d space.

Target Distribution: Before training:

Final Integral: 0.0063339(41)

VEGAS plain: 0.0063349(92)

VEGAS full: 0.0063326(21)

Trained efficiency: 14.8 % Untrained efficiency: 0.6 %

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 22 / 27

II.3: The 4-d Camel function illustrates the
learning of the NN.

Our test function: 2 Gaussian peaks, randomly placed in a 4d space.

Target Distribution: After 5 epochs:

Final Integral: 0.0063339(41)

VEGAS plain: 0.0063349(92)

VEGAS full: 0.0063326(21)

Trained efficiency: 14.8 % Untrained efficiency: 0.6 %

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 22 / 27

II.3: The 4-d Camel function illustrates the
learning of the NN.

Our test function: 2 Gaussian peaks, randomly placed in a 4d space.

Target Distribution: After 10 epochs:

Final Integral: 0.0063339(41)

VEGAS plain: 0.0063349(92)

VEGAS full: 0.0063326(21)

Trained efficiency: 14.8 % Untrained efficiency: 0.6 %

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 22 / 27

II.3: The 4-d Camel function illustrates the
learning of the NN.

Our test function: 2 Gaussian peaks, randomly placed in a 4d space.

Target Distribution: After 25 epochs:

Final Integral: 0.0063339(41)

VEGAS plain: 0.0063349(92)

VEGAS full: 0.0063326(21)

Trained efficiency: 14.8 % Untrained efficiency: 0.6 %

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 22 / 27

II.3: The 4-d Camel function illustrates the
learning of the NN.

Our test function: 2 Gaussian peaks, randomly placed in a 4d space.

Target Distribution: After 100 epochs:

Final Integral: 0.0063339(41)

VEGAS plain: 0.0063349(92)

VEGAS full: 0.0063326(21)

Trained efficiency: 14.8 % Untrained efficiency: 0.6 %

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 22 / 27

II.3: The 4-d Camel function illustrates the
learning of the NN.

Our test function: 2 Gaussian peaks, randomly placed in a 4d space.

Target Distribution: After 200 epochs:

Final Integral: 0.0063339(41)

VEGAS plain: 0.0063349(92)

VEGAS full: 0.0063326(21)

Trained efficiency: 14.8 % Untrained efficiency: 0.6 %

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 22 / 27

II.3: Sherpa needs a high-dimensional integrator.

Sherpa is a Monte Carlo event generator for the Simulation of High-Energy
Reactions of PArticles. We use Sherpa to

map the unit-hypercube of our integration domain to momenta and
angles. To improve efficiency, Sherpa uses a recursive multichannel
algorithm.

⇒ ndim = 3nfinal − 4︸ ︷︷ ︸
kinematics

+ nfinal − 1︸ ︷︷ ︸
multichannel

compute the matrix element of the process. The COMIX++

ME-generator uses color-sampling, so we need to integrate over final
state color configurations, too.

⇒ ndim = 4nfinal − 3 + 2(ncolor)

https://sherpa.hepforge.org/

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 23 / 27

II.3: Already in e+e− → 3j we are more effective.

← spectator of g color

← g color

← spectator of q color

← q color

← propagator of decaying fermion

← cosϑ of decaying fermion with beam

← ϕ of decaying fermion with beam

← cosϑ of decay

← ϕ of decay

← multichannel

Target distribution

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 24 / 27

II.3: Already in e+e− → 3j we are more effective.

← spectator of g color

← g color

← spectator of q color

← q color

← propagator of decaying fermion

← cosϑ of decaying fermion with beam

← ϕ of decaying fermion with beam

← cosϑ of decay

← ϕ of decay

← multichannel

Learned distribution

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 25 / 27

II.3: Already in e+e− → 3j we are more effective.

Sherpa
Our code

σour code = 4887.1± 4.6pb σSherpa = 4877.0± 17.7pb

unweighting efficiency = 12.9% unweighting efficiency = 2.8%

weight distribution

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 26 / 27

II.3: Already in e+e− → 3j we are more effective.

Sherpa
Our code

σour code = 4887.1± 4.6pb σSherpa = 4877.0± 17.7pb

unweighting efficiency = 12.9% unweighting efficiency = 2.8%

weight distribution

last night’s run: 33%

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 26 / 27

Improving Numerical Integration and Event Generation
with Normalizing Flows

I summarized the concepts of numerical integration
and the “traditional” VEGAS algorithm.

I introduced Neural Networks as versatile nonlinear
functions.

I presented the idea of
Normalizing Flows.

I discussed their superiority for
large integration dimensions.

I showed the results of two different examples

In e+e− → 3j , we “beat” Sherpa by a factor of /5 10.

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 27 / 27

Improving Numerical Integration and Event Generation
with Normalizing Flows

I summarized the concepts of numerical integration
and the “traditional” VEGAS algorithm.

I introduced Neural Networks as versatile nonlinear
functions.

I presented the idea of
Normalizing Flows.

I discussed their superiority for
large integration dimensions.

I showed the results of two different examples

In e+e− → 3j , we “beat” Sherpa by a factor of /5 10.

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 27 / 27

Improving Numerical Integration and Event Generation
with Normalizing Flows

I summarized the concepts of numerical integration
and the “traditional” VEGAS algorithm.

I introduced Neural Networks as versatile nonlinear
functions.

I presented the idea of
Normalizing Flows.

I discussed their superiority for
large integration dimensions.

I showed the results of two different examples

In e+e− → 3j , we “beat” Sherpa by a factor of /5 10.

Claudius Krause (Fermilab) Machine Learning Phase Space October 8, 2019 27 / 27

	Part I: The ``traditional'' approach
	Part II: The Machine Learning approach
	Part II.1: Neural Network Basics
	Part II.2: Numerical Integration with Neural Networks
	Part II.3: Examples

