Higgs Effective Field Theories and their Renormalization — Theory Palaver, JGU Mainz —

Claudius Krause

Fermi National Accelerator Laboratory

May 7, 2019

Unterstützt von / Supported by

In collaboration with: G. Buchalla, O. Catà, A. Celis, M. Knecht, J. de Blas, O. Eberhardt, J. Toelstede

Where is the New Physics?

	Madal	1.~	.late?	Emiss	(r. +10-	Linuit			Deference
	Model	1.7	Jets	ът.	15 miles	Limit			Reference
	ADD $G_{KK} + g/q$	00,0	1-41	Yes	36.1	6 · · · · · · · · · · · · · · · · · · ·	7.7 TeV	n = 2	1711.03301
2	ADD non-resonant yy	2γ	-	-	36.7	he see the second s	8.6 TeV	e = 3 HLZ NLO	1707.04147
8	ADD QBH	-	2)	-	37.0	la l	8.9 TeV	n = 6	1703.09127
ŝ.	ADD BH high $\sum p_T$	$\geq 1 \sigma, \mu$	221	-	3.2		8.2 TeV	n = 6, M _D = 3 TeV, rot BH	1606.02265
8	ADD BH multijet	-	531	-	3.6	Le la construcción de la	9.55 TeV	n = 6, M _D = 3 TeV, rot BH	1512.02596
8	RS1 $G_{KK} \rightarrow \gamma\gamma$	2γ	-	-	36.7	sc mass 4.1 TeV		$k/M_{Pl} = 0.1$	1707.04147
2	Bulk RS $G_{NK} \rightarrow WW/ZZ$	multi-channe	4		36.1	ex mass 2.3 TeV		$k/M_{Pl} = 1.0$	1908.02390
ă.	Bulk RS $G_{NK} \rightarrow WW/ZZ \rightarrow q$	iqqq 0 e,µ	2.1	_	139	xx mass 2.8 TeV		$k/M_{Pl} = 1.0$	ATLAS-CONF-2019-
-	Bulk RS $g_{XX} \rightarrow tt$	14,4-3	≥ 1 b, ≥ 1J	P) Yes	36.1	ax mass 3.5 TeV		r/m = 19%	1904.10823
_	2UED / PPP	14,4	220,23	Yes	36.1	K mass 1.8 TeV.		$Ter(1,1), S(A^{(1,1)} \rightarrow tt) = 1$	1903.09678
	$\text{SSM}\ Z^* \to \ell\ell$	2 e, µ	-	-	139	(mass 5.1)	Te V		1903.06248
2	SSM $Z' \rightarrow \tau \tau$	2 7	-	-	36.1	(mass 2.42 TeV			1709.07242
3	Leptophobic $Z^{\prime} \rightarrow bb$	-	2 b	-	36.1	mass 2.1 TeV			1905.09299
Ř.	Leptophobic $Z^{\gamma} \rightarrow tt$	14,4-3	≥ 1 b, ≥ 1J	P) Yes	36.1	mass 3.0 TeV		$\Gamma/m = 1\%$	1904.10923
6	SSM $W' \rightarrow \ell r$	1.4,4	-	Yes	79.5	F mass 5.1	STeV		ATLAS-CONF-2018-0
3	SSM $W' \rightarrow \tau \nu$	17	-	Yes	36.1	7 mass 3.7 TeV			1901.06992
8	HVT $V' \rightarrow WV \rightarrow qqqq$ mode	IB 0 σ,μ	2 J	-	139	mass 4.4 Tel	1	$E_{V} = 3$	ATLAS-CONF-2019-0
÷.,	$HVT V' \rightarrow WH/2H \mod B$	multi-channe			36.1	2.93 TeV		$E_V = 3$	1712.06518
_	DISM $W_R \rightarrow tb$	multi-channe	4		36.1	7 mass 3.25 TeV			1907.10472
-	CI qqqq	-	2)	-	37.0			21.5 TeV 914	1703.09127
0	Cl ((qq	2 e, µ	-	-	36.1			40.0 TeV 41	1707.02424
_	CI rett	بره اخ	516,511	Yes	36.1	2.57 TeV		$ C_{kd} = 4a$	1811.02305
	Axial-vector mediator (Dirac DN	η Ο <i>κ</i> ,μ	1-4j	Yes	36.1	1.55 TeV		$g_{\pm}=0.25, g_{\pm}=1.0, m(\chi) = 1 \text{ GeV}$	1711.02301
DR	Colored scalar mediator (Dirac	DM) 0 e.u	1-4	Yes	36.1	1.67 TeV		g=1.0, m(g) = 1 GeV	1711.02301
	VV _{XX} EFT (Dirac DM)	<i>بر ہ</i> 0	$1.1, \le 1.1$	Yes	3.2	700 GeV		m(x) < 150 GeV	1608.02372
	Scalar reson. $\phi \rightarrow t \chi$ (Dirac DN	6) 0-1 e, µ	1 b, 0-1 J	Yes	36.1	5 3.4 TeV		y = 0.4, J = 0.2, m(g) = 10 GeV	1912.09743
	Scalar LQ 1 st gen	1,2 e	221	Yes	36.1	O mass 1.4 TeV		$\beta = 1$	1902.00377
0	Scalar LQ 2 nd gen	1,2 µ	22)	Yes	36.1	O mass 1.56 TeV		$\beta = 1$	1902.00377
-	Scalar LQ 3rd gen	2 7	2 b	-	36.1	07 mass 1.03 TeV		$S(LQ_1^c \rightarrow b\sigma) = 1$	1902.08103
	Scalar LQ 3 rd gen	0-1 e, p	2.5	Yes	36.1	0 ² mass 970 GeV		$S(LQ_{3}^{d} \rightarrow tr) = 0$	1902.08103
-	VLO $TT \rightarrow Ht/Zt/Wb + X$	multi-channel	6		36.1	1.27 TeV		SUSI doublet	1909.02343
	$VLQ BB \rightarrow Wt/Zb + X$	multi-channel			36.1	mass 1.34 TeV		SU(2) doublet	1908.02343
a 2.	VLQ $T_{5/3}T_{5/3} T_{5/3} \rightarrow Wt + X$	2(55)/23 e.p	216,211	Yes	36.1	LG4 TeV		$\mathcal{B}[T_{5/3} \rightarrow \mathcal{W}t] = 1, c[T_{5/3}\mathcal{W}t] = 1$	1907.11993
12	$VLQ Y \rightarrow Wb + X$	1.0,0	$\geq 1b,\geq 1$	Yes	36.1	mass 1.85 TeV		$S(Y \rightarrow Wb) + 1, c_R(Wb) + 1$	1912.07343
· •	$VLQ B \rightarrow Hb + X$	0 e.µ. 2 y	≥ 1 b, ≥ 1	Yes	79.5	mass 1.21 TeV		*#+ 0.5	ATLAS-CONF-2018-
	$VLQ QQ \rightarrow WqWq$	1.4,4	24)	Yes	20.3	mass 690 GeV			1509.04291
55	Excited quark q' → qg		21		139	mass	6.7 TeV	only at and d', A = se[q']	ATLAS-CONF-2019-
85	Excited quark $q^* \rightarrow q\gamma$	1 y	- 1) -	-	36.7	- mass 5.3	TeV	only an and d+, A = en(q+)	1709.10440
5 Ě	Excited quark $b' \rightarrow bg$	-	1 b, 1 j	-	36.1	mass 2.6 TeV			1905.09299
5.4	Excited lepton (*	3 4,4	- 1	-	20.3	mass 3.0 TeV		A = 3.0 TeV	1411.2921
~	Excited lepton v1	3 e. µ. τ	-	-	20.3	nass 1.5 TeV		$\Lambda = 1.6$ TeV	1411.2921
	Type III Seesaw	14,4	221	Yes	79.8	^A mass 500 GeV			ATLAS-CONF-2018-
	LRSM Majorana v	2.4	2)		36.1	a mass 3.2 TeV		$m(W_R) = 4.1$ TeV, $g_L = g_R$	1909.11105
5	Higgs triplet $H^{**} \rightarrow \ell \ell$	2,3,4 e, µ (\$5	R -	-	36.1	"" mass 870 GeV		DV production	1710.09748
Ohe	Higgs triplet $H^{*+} \rightarrow \ell \tau$	3 e, µ, T	-	-	20.3	11 mass 400 GeV		DY production, $S(H_{\lambda}^{**} \rightarrow \ell r) = 1$	1411.2921
	Multi-charged particles	-	-	-	36.1	ul6-charged particle mass 1.22 TeV		DV production, jul - 5+	1912.03973
	Magnetic monopoles				7.0	cropole mass 1.34 TeV		DY production, $ g =1g_{\rm D},$ spin $1/2$	1509.08059

Small-radius (lame-radius) jets are denoted by the letter (.)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/

- The LHC confirmed the Standard Model.
- ATLAS [1207.7214] and CMS [1207.7235] found a Higgs-like scalar.
- All other searches for New Physics have been negative so far.

We can use EFTs because we have a mass gap.

We can use EFTs because we have a mass gap.

For a model-independent analysis we use the bottom-up approach.

However, we can learn something in both approaches:

- top-down: Gain intuition with UV-models
- bottom-up: Fitting Wilson-coefficients
- $\Rightarrow\,$ For a consistent analysis, we need the RGEs!

 \Rightarrow EFTs have become a popular field of research. \Leftarrow

Ε

Higgs Effective Field Theories and their Renormalization

Part I: The two Higgs Effective Field Theories [1307.5017,1412.6356,1803.00939]

$$\left[rac{1}{12}\Lambda^{\mu
u}\Lambda_{\mu
u}+rac{1}{2}\Sigma^2
ight]$$

Part II: The Master Formula for 1-loop divergences [1710.06412,1904.07840]

Part III: The Application to Higgs EFTs [1710.06412,1904.07840]

Ingredients:

- Particles: all SM particles (incl. 3 GBs for the W^{\pm}/Z masses)
- Symmetries: $SU(3)_C \times SU(2)_L \times U(1)_Y \rightarrow SU(3)_C \times U(1)_{em}$, B, L at LO: flavor and custodial symmetry
- Power counting: depends on type of the EFT:

Ingredients:

- Particles: all SM particles (incl. 3 GBs for the W^{\pm}/Z masses)
- Symmetries: $SU(3)_C \times SU(2)_L \times U(1)_Y \rightarrow SU(3)_C \times U(1)_{em}$, B, L at LO: flavor and custodial symmetry
- Power counting: depends on type of the EFT:

```
decoupling (linear) EFT:
– SMEFT –
```

• LO: SM

 $\bullet\,$ Higgs is written as doublet ϕ

```
    expansion in canonical 
dimensions
```


Ingredients:

- Particles: all SM particles (incl. 3 GBs for the W^{\pm}/Z masses)
- Symmetries: $SU(3)_C \times SU(2)_L \times U(1)_Y \rightarrow SU(3)_C \times U(1)_{em}$, B, L at LO: flavor and custodial symmetry
- Power counting: depends on type of the EFT:

```
decoupling (linear) EFT:
- SMEFT -
```

• LO: SM

- $\bullet\,$ Higgs is written as doublet ϕ
- expansion in canonical dimensions

non-decoupling (nonlinear) EFT: $- EWCh\mathcal{L} -$

- LO: Higgs-less chiral Lagrangian + generic scalar *h*
- written in terms of U and h
- expansion in loops or chiral dimensions.

I: In the SMEFT, the expansion parameter is $\left(\frac{v}{\Lambda}\right)$.

Assumptions:

- There is a gap to the scale of new physics: $\Lambda \gg v$
- The low-energy field content contains the Higgs doublet.
- $\rightarrow~LO$ is renormalizable, new physics decouples. $$\]$ Appelquist/Carazzone ['75 PRD]

I: In the SMEFT, the expansion parameter is $\left(\frac{v}{\Lambda}\right)$.

Assumptions:

- There is a gap to the scale of new physics: $\Lambda \gg v$
- The low-energy field content contains the Higgs doublet.
- \rightarrow LO is renormalizable, new physics decouples. Appelquist/Carazzone ['75 PRD]

$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}}^{d=4} + \tfrac{v}{\Lambda} \mathcal{L}^{d=5} + \tfrac{v^2}{\Lambda^2} \mathcal{L}^{d=6} + \tfrac{v^3}{\Lambda^3} \mathcal{L}^{d=7} + \tfrac{v^4}{\Lambda^4} \mathcal{L}^{d=8} + \dots$$

- dim 5: 2 operators (violating L) Weinberg ['79 PRL]
- dim 6: 76 operators (conserving B), 8 operators (violating B) Buchmüller, Wyler ['86 NPB]; Grzadkowski et al. [1008.4884, JHEP]
- dim 7: 30 operators (all violating *L*, some *B*)
 Lehman [1410.4193, PRD]; Liao/Ma [1607.07309, JHEP]
- dim 8: 895 operators (conserving *B*), 98 operators (violating *B*) Lehman/Martin [1510.00372, JHEP]; Henning et al. [1512.03433, JHEP]

(For 1 generation and including hermitean conjugates.)

I: Current Data is consistent with the SM.

Assumptions: Feruglio [hep-ph/9301281], Bagger et al. [hep-ph/9306256], Chivukula et al. [hep-ph/9312317], Wang/Wang [hep-ph/0605104], Grinstein/Trott[0704.1505], Contino[1005.4269], Alonso et al. [1212.3305], ...

- The pattern of symmetry breaking is $SU(2)_L imes SU(2)_R o SU(2)_{V=L+R}$
- The transverse gauge bosons and the fermions of the SM are weakly coupled. possibly:
- A new strong sector generates the 3 GBs of EWSB and the h at the scale f.

Assumptions: Feruglio [hep-ph/9301281], Bagger et al. [hep-ph/9306256], Chivukula et al. [hep-ph/9312317], Wang/Wang [hep-ph/0605104], Grinstein/Trott[0704.1505], Contino[1005.4269], Alonso et al. [1212.3305], ...

• The pattern of symmetry breaking is $SU(2)_L imes SU(2)_R o SU(2)_{V=L+R}$

• The transverse gauge bosons and the fermions of the SM are weakly coupled. possibly:

• A new strong sector generates the 3 GBs of EWSB and the h at the scale f.

The Goldstone bosons φ are described by:

$$\mathcal{L} = rac{v^2}{4} \langle \partial_\mu U^\dagger \partial^\mu U
angle, \qquad ext{where} \qquad U = \exp\left\{2irac{\mathcal{T}_aarphi_a}{v}
ight\}$$

Callan/Coleman/Wess/Zumino ['69 Phys. Rev.], Feruglio [hep-ph/9301281]

This was used in Chiral Perturbation Theory (χ PT)

$$U \rightarrow IUr^{\dagger}$$
, where $I, r \in SU(3)_{L,R}$

Gasser/Leutwyler ['84 Annals Phys., '85 Nucl. Phys. B]

This was used in Chiral Perturbation Theory (χ PT)

 $U \rightarrow IUr^{\dagger}$, where $I, r \in SU(3)_{L,R}$

Gasser/Leutwyler ['84 Annals Phys., '85 Nucl. Phys. B]

$$\mathcal{L}_{LO} = \frac{v^2}{4} \langle (D_{\mu}U)(D^{\mu}U^{\dagger}) \rangle \ (1 + F_U(h)) + \frac{1}{2}(\partial_{\mu}h)(\partial^{\mu}h) - \mathcal{V}(h) \\ + i\bar{\Psi}_f \not{D}\Psi_f - (v\,\bar{\Psi}_f U\,Y_f(h)\Psi_f + \text{h.c.}) \\ - \frac{1}{2} \langle G_{\mu\nu}G^{\mu\nu} \rangle - \frac{1}{2} \langle W_{\mu\nu}W^{\mu\nu} \rangle - \frac{1}{4}B_{\mu\nu}B^{\mu\nu}$$

$$\mathcal{L}_{LO} = \frac{v^2}{4} \langle (D_{\mu}U)(D^{\mu}U^{\dagger}) \rangle (1 + F_{U}(h)) + \frac{1}{2}(\partial_{\mu}h)(\partial^{\mu}h) - \mathcal{V}(h) \\ + i\bar{\Psi}_{f} \not{D}\Psi_{f} - (v\,\bar{\Psi}_{f}U\,Y_{f}(h)\Psi_{f} + \text{h.c.}) \\ - \frac{1}{2} \langle G_{\mu\nu}G^{\mu\nu} \rangle - \frac{1}{2} \langle W_{\mu\nu}W^{\mu\nu} \rangle - \frac{1}{4}B_{\mu\nu}B^{\mu\nu}$$

$$\mathcal{L}_{LO} = \frac{v^2}{4} \langle (D_{\mu}U)(D^{\mu}U^{\dagger}) \rangle \ (1 + F_U(h)) + \frac{1}{2} (\partial_{\mu}h)(\partial^{\mu}h) - \mathcal{V}(h) \\ + i \bar{\Psi}_f \not{D} \Psi_f - (v \bar{\Psi}_f U Y_f(h) \Psi_f + \text{h.c.}) \\ - \frac{1}{2} \langle G_{\mu\nu} G^{\mu\nu} \rangle - \frac{1}{2} \langle W_{\mu\nu} W^{\mu\nu} \rangle - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$

$$\mathcal{L}_{LO} = \frac{v^2}{4} \langle (D_{\mu}U)(D^{\mu}U^{\dagger}) \rangle \ (1 + F_U(h)) + \frac{1}{2}(\partial_{\mu}h)(\partial^{\mu}h) - \mathcal{V}(h) \\ + i\overline{\Psi}_f D \overline{\Psi}_f - (v \,\overline{\Psi}_f U \, Y_f(h) \Psi_f + \text{h.c.}) \\ - \frac{1}{2} \langle G_{\mu\nu} G^{\mu\nu} \rangle - \frac{1}{2} \langle W_{\mu\nu} W^{\mu\nu} \rangle - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$

$$\mathcal{L}_{LO} = \frac{v^2}{4} \langle (D_{\mu}U)(D^{\mu}U^{\dagger}) \rangle \ (1 + F_U(h)) + \frac{1}{2}(\partial_{\mu}h)(\partial^{\mu}h) - \mathcal{V}(h) \\ + i\bar{\Psi}_f \not{D}\Psi_f - (v\,\bar{\Psi}_f U\,Y_f(h)\Psi_f + \text{h.c.}) \\ - \frac{1}{2} \langle G_{\mu\nu}G^{\mu\nu} \rangle - \frac{1}{2} \langle W_{\mu\nu}W^{\mu\nu} \rangle - \frac{1}{4}B_{\mu\nu}B^{\mu\nu}$$

$$\mathcal{L}_{LO} = \frac{v^2}{4} \langle (D_{\mu}U)(D^{\mu}U^{\dagger}) \rangle (1 + F_U(h)) + \frac{1}{2}(\partial_{\mu}h)(\partial^{\mu}h) - \mathcal{V}(h) \\ + i\bar{\Psi}_f \not{D}\Psi_f - (v\,\bar{\Psi}_f U\,Y_f(h)\Psi_f + \text{h.c.}) \\ - \frac{1}{2} \langle G_{\mu\nu}G^{\mu\nu} \rangle - \frac{1}{2} \langle W_{\mu\nu}W^{\mu\nu} \rangle - \frac{1}{4}B_{\mu\nu}B^{\mu\nu}$$

$$\mathcal{L}_{LO} = \frac{v^2}{4} \langle (D_{\mu}U)(D^{\mu}U^{\dagger}) \rangle (1 + F_U(h)) + \frac{1}{2}(\partial_{\mu}h)(\partial^{\mu}h) - \mathcal{V}(h) \\ + i\bar{\Psi}_f \not{D}\Psi_f - (v\bar{\Psi}_f U Y_f(h)\Psi_f + h.c.) \\ - \frac{1}{2} \langle G_{\mu\nu}G^{\mu\nu} \rangle - \frac{1}{2} \langle W_{\mu\nu}W^{\mu\nu} \rangle - \frac{1}{4}B_{\mu\nu}B^{\mu\nu}$$

Properties:

• It has generalized Higgs-couplings compared to the SM.

 \Rightarrow related to the κ -formalism at LO.

- There is a hierarchy to the operators that modify the EWPD.
- It captures the low-energy effects of strongly-coupled new physics.
- It is non-renormalizable at LO.

- \mathcal{L}_{LO} is not renormalizable in the traditional sense, but it is renormalizable in the modern sense order by order in an EFT:
- The LO counterterms are included at NLO.
- $\Rightarrow\,$ The basis of NLO-operators is at least given by the counterterms of the one loop divergences.

• We identify
$$\frac{f^2}{\Lambda^2} \simeq \frac{1}{16\pi^2}$$
.

• The scale of new physics $f \approx v$, $\xi = \frac{v^2}{f^2} \approx 1$ (to be relaxed later)

- \mathcal{L}_{LO} is not renormalizable in the traditional sense, but it is renormalizable in the modern sense — order by order in an EFT:
- The LO counterterms are included at NLO.
- \Rightarrow The basis of NLO-operators is at least given by the counterterms of the one loop divergences.

• We identify
$$\frac{f^2}{\Lambda^2} \simeq \frac{1}{16\pi^2}$$
.

• The scale of new physics $f \approx v$, $\xi = \frac{v^2}{\epsilon^2} \approx 1$ (to be relaxed later)

How can we identify the necessary counterterms?

- Using the superficial degree of divergence. \Rightarrow next slide
- Computing all divergent one-loop terms.

 \Rightarrow last part of this talk

$$\mathcal{D} \sim p^{2L+2-X-\frac{1}{2}(F_L+F_R)-N_w} \left(\frac{\varphi}{v}\right)^B \left(\frac{h}{v}\right)^H \bar{\Psi}_L^{F_L^1} \Psi_L^{F_L^2} \bar{\Psi}_R^{F_R^1} \Psi_R^{F_R^2} \left(\frac{\mathcal{X}_{\mu\nu}}{v}\right)^X$$

Claudius Krause (Fermilab)

$$\mathcal{D} \sim p^{2L+2-X-\frac{1}{2}(F_L+F_R)-N_w} \left(\frac{\varphi}{v}\right)^B \left(\frac{h}{v}\right)^H \bar{\Psi}_L^{F_L^1} \Psi_L^{F_L^2} \bar{\Psi}_R^{F_R^1} \Psi_R^{F_R^2} \left(\frac{\mathcal{X}_{\mu\nu}}{v}\right)^X$$

Claudius Krause (Fermilab)

$$\mathcal{D} \sim p^{2L+2-X-\frac{1}{2}(F_L+F_R)-N_w} \left(\frac{\varphi}{v}\right)^B \left(\frac{h}{v}\right)^H \bar{\Psi}_L^{F_L^1} \Psi_L^{F_L^2} \bar{\Psi}_R^{F_R^1} \Psi_R^{F_R^2} \left(\frac{\chi_{\mu\nu}}{v}\right)^X$$
This is equivalent to a counting of chiral dimensions:
 $2L + 2 = [\text{couplings}]_{\chi} + [\text{derivatives}]_{\chi} + [\text{fields}]_{\chi}$

$$[\text{bosons}]_{\chi} = 0,$$

$$[\text{fermion bilinears}]_{\chi} = [\text{derivatives}]_{\chi} = [\text{weak couplings}]_{\chi} = 1$$

I: Chiral dimensions have several applications.

- They are a generalization of the $\mathcal{O}(p)$ -expansion of χ PT:
- ightarrow Classify the NLO ($\chi=$ 4) operators.
 - Control the explicit breaking of symmetries (*e.g.* custodial or CP): If they are broken by weak perturbations (like gauge or Yukawa), their spurions come with chiral dimensions as well.
 - Gain additional informations about dimension 6 operators: $[g^{3} \langle W^{\nu}_{\mu} W^{\rho}_{\nu} W^{\mu}_{\rho} \rangle]_{\chi} = 6 \rightarrow \text{arises at } 2 \text{ loops}$ (given no states at f)
 - They give the correct generalization of NDA, *i.e.* they also describe internal gauge and Yukawa lines.

Naive Dimensional Analysis: Georgi, Manohar ['84 NPB]; Georgi [hep-ph/9207278]

I: A graphical way to see the relation of <u>SMEFT</u> vs. $EWCh\mathcal{L}$

I: A graphical way to see the relation of SMEFT vs. $EWCh\mathcal{L}$

$$\begin{aligned} \mathcal{L}_{EWCh} = & \mathcal{L}_{kin}^{h,\Psi,\text{gauge}} + \frac{v^2}{4} \langle (D_{\mu}U)(D^{\mu}U^{\dagger}) \rangle \ (1 + F_U(h)) - \mathcal{V}(h) \\ & - (v \, \bar{\Psi}_f U \, Y_f(h) \Psi_f + \text{h.c.}) + \mathcal{L}_{\text{NLO}} \end{aligned}$$

Buchalla/Catà/Celis/CK [1504.01707,NPB]

We focus on current observables and require f > v, *i.e.* $\xi = v^2/f^2 < 1$.

Claudius Krause (Fermilab)
I: Current observables select \mathcal{L}_{fit} from the *EWChL*.

$$\mathcal{L}_{fit} = 2c_{V} \left(m_{W}^{2} W_{\mu}^{+} W^{-\mu} + \frac{1}{2} m_{Z}^{2} Z_{\mu} Z^{\mu} \right) \left(\frac{h}{v} \right)$$

$$- c_{t} y_{t} \overline{t} th - c_{b} y_{b} \overline{b} bh - c_{c} y_{c} \overline{c} ch - c_{\tau} y_{\tau} \overline{\tau} \tau h - c_{\mu} y_{\mu} \overline{\mu} \mu h$$

$$+ \frac{e^{2}}{16\pi^{2}} c_{\gamma\gamma} F_{\mu\nu} F^{\mu\nu} \frac{h}{v} + \frac{e^{2}}{16\pi^{2}} c_{Z\gamma} Z_{\mu\nu} F^{\mu\nu} \frac{h}{v} + \frac{g_{s}^{2}}{16\pi^{2}} c_{gg} \langle G_{\mu\nu} G^{\mu\nu} \rangle \frac{h}{v}$$

$$= Buchalla/Cata/Cetis/CK [1504.01707,NPB]$$
We focus on current observables and require $f > v$, *i.e.* $\xi = v^{2}/f^{2} < 1$.
Single h processes:
$$tree: \qquad -- \sqrt{N} \sqrt{N} \qquad -- \sqrt{C} t_{t,b,\tau,\mu,(c)}$$

$$1-loop: \qquad -- \sqrt{N} \sqrt{N} \qquad + -- \sqrt{N} \sqrt{N} \qquad + -- \sqrt{N} \sqrt{N}$$

$$C_{t,b,\tau,\mu,(c)} \qquad C_{V} \qquad C_{\gamma\gamma,gg,Z\gamma}$$

Claudius Krause (Fermilab)

I: Current observables select \mathcal{L}_{fit} from the *EWChL*.

$$\mathcal{L}_{\text{fit}} = 2c_{V} \left(m_{W}^{2} W_{\mu}^{+} W^{-\mu} + \frac{1}{2} m_{Z}^{2} Z_{\mu} Z^{\mu} \right) \left(\frac{h}{v} \right)$$

$$- c_{t} y_{t} \overline{t} th - c_{b} y_{b} \overline{b} bh - c_{c} y_{c} \overline{c} ch - c_{\tau} y_{\tau} \overline{\tau} \tau h - c_{\mu} y_{\mu} \overline{\mu} \mu h$$

$$+ \frac{e^{2}}{16\pi^{2}} c_{\gamma\gamma} F_{\mu\nu} F^{\mu\nu} \frac{h}{v} + \frac{e^{2}}{16\pi^{2}} c_{Z\gamma} Z_{\mu\nu} F^{\mu\nu} \frac{h}{v} + \frac{g_{z}^{2}}{16\pi^{2}} c_{gg} \langle G_{\mu\nu} G^{\mu\nu} \rangle \frac{h}{v}$$
Buchalla/Catà/Celis/CK [1504.01707,NPB]
We focus on current observables and require $f > v$, *i.e.* $\xi = v^{2}/f^{2} < 1$.
Single h processes:
tree:

$$-- \sqrt{N} \sqrt{N}$$

$$-- \sqrt{C_{t,b,\tau,\mu,(c)}}$$

$$C_{V} C_{t,b,\tau,\mu,(c)}$$

$$+ -- \sqrt{N} \sqrt{N}$$

$$+ -- \sqrt{N} \sqrt{N}$$

$$-- \sqrt{C_{t,b,\tau,\mu,(c)}}$$

Claudius Krause (Fermilab)

I: We use HEPfit to find the current constraints.

 HEPfit:
 \Rightarrow http://hepfit.roma1.infn.it/

 A Code for the Combination of Indirect and Direct Constraints
 on High Energy Physics Models.

 The HEPfit Collaboration [in preparation]

I: We use HEPfit to find the current constraints.

HEPfit:

http://hepfit.roma1.infn.it/ \Rightarrow A Code for the Combination of Indirect and Direct Constraints on High Energy Physics Models. The HEPfit Collaboration [in preparation]

It is:

- an open source fitter: available at https://github.com/silvest/HEPfit
- flexible:

add your favorite model or observable

- a stand-alone code with few dependencies: ROOT, GSL, BOOST, (BAT)
- fast (& optional): using the MCMC implementation of the Bayesian Analysis Toolkit (BAT)

Caldwell/Kollar/Kroninger [0808.2552,Comput.Phys.Commun.]

HEP

I: We use HEPfit to find the current constraints.

Experimental input: For each decay channel we use the signal strength

$$\mu(Y) = \sum_{X} \operatorname{eff}(X, Y) \frac{\sigma(X) \cdot \operatorname{Br} (h \to Y)}{(\sigma(X) \cdot \operatorname{Br} (h \to Y))_{SM}}$$

• If available, per experimental production category.

• Otherwise, per production mechanism.

		ЬБ	WW	$\tau \tau$	ZZ	$\gamma\gamma$	$Z\gamma$	$\mu\mu$
	SM Br	57.5%	21.6%	6.3%	2.7%	2.3‰	1.6‰	0.2‰
ggF8	87.2%	_	AC	AC	AC	AC	AC	AC
ggF13	87.1%	_	AC	С	AC	AC	AC	AC
VBF8	7.2%	_	AC	AC	AC	AC	AC	AC
VBF13	7.4%	С	AC	C	AC	AC	AC	AC
Vh8	5.1%	AC	AC	AC	AC	AC	AC	AC
Vh13	4.4%	AC	AC	C	AC	AC	AC	AC
tth8	0.6%	AC	_	_	AC	AC	AC	AC
tth13	1.0%	AC	AC	AC	AC	AC	AC	AC
Vh2		Tev	Uncertainty of the signal strengths $\mu\pm\Delta\mu$:					
tth2 Tev		$0 < \Delta \mu < 0.5$		$0.5 \leq \Delta \mu < 1.0$		$\Delta \mu > 1.0$		
Table by Otto Eborbardt, HEET '19, Main								

Claudius Krause (Fermilab)

I: The Posterior around the SM solution.

- The likelihood has multiple maxima ($c_i \rightarrow -c_i$ symmetries).
- We use a prior to select the SM-like solution.
- More details about the choice of priors are in [1803.00939,JHEP].
- Consistent with SM, but $\mathcal{O}(10\%)$ deviations still possible.
- c_{Zγ} and c_c are not constrained beyond prior.

de Blas/Eberhardt/CK [1803.00939,JHEP]

I: Why should we go beyond tree level?

For consistent data analysis:

- Once we enter the precision phase at the LHC, loop effects cannot be neglected.
- LHC probes $E \sim v$, but new physics is matched to the EFT at $E \sim \Lambda \gg v$

I: Why should we go beyond tree level?

For consistent data analysis:

- Once we enter the precision phase at the LHC, loop effects cannot be neglected.
- LHC probes $E \sim v$, but new physics is matched to the EFT at $E \sim \Lambda \gg v$

To learn more about the EFT itself:

- Are the bases of NLO operators complete?
- What subset of the chiral dimension 4 operators of the *EWChL* are counterterms?

I: Why should we go beyond tree level?

For consistent data analysis:

- Once we enter the precision phase at the LHC, loop effects cannot be neglected.
- LHC probes $E \sim v$, but new physics is matched to the EFT at $E \sim \Lambda \gg v$

To learn more about the EFT itself:

- Are the bases of NLO operators complete?
- What subset of the chiral dimension 4 operators of the *EWChL* are counterterms?

To learn more about the field theory in general:

 $\bullet\,$ How can we tackle an ∞ number of Feynman diagrams?


```
SMEFT at 1 loop
 • n \text{ LO vertices} \rightarrow \text{LO operators}
 • \binom{n \text{ LO vertices}}{1 \text{ NLO vertex}} LO + NLO ops.
```


Higgs Effective Field Theories and their Renormalization

Part I: The two Higgs Effective Field Theories [1307.5017,1412.6356,1803.00939]

$$\left[rac{1}{12}\Lambda^{\mu
u}\Lambda_{\mu
u}+rac{1}{2}\Sigma^2
ight]$$

Part II: The Master Formula for 1-loop divergences [1710.06412,1904.07840]

Part III: The Application to Higgs EFTs [1710.06412,1904.07840]

$\frac{1}{12}\Lambda^{\mu\nu}\Lambda_{\mu\nu} + \frac{1}{2}\Sigma^2$ II: We use the Background-Field-Method...

starting from the generating functional:

$$Z[j,\rho,\bar{\rho}] = e^{iW[j,\rho,\bar{\rho}]} = \int [d\phi d\psi d\bar{\psi}] \quad e^{i(S[\phi,\psi,\bar{\psi}]+j\phi+\bar{\psi}\rho+\bar{\rho}\psi)},$$

$$\phi = \hat{\phi} + \phi_{qu}, \qquad \qquad \psi = \hat{\psi} + \psi_{qu},$$

$$\Rightarrow e^{iW_{L=1}} = \int [d\phi_{qu}d\psi_{qu}d\bar{\psi}_{qu}] \quad e^{iS^{(2)}[\hat{\phi},\hat{\psi},\hat{\psi};\phi_{qu},\psi_{qu},\bar{\psi}_{qu}]}$$
Abbott

Quantum gauge fixing:

$$\mathcal{L}_{\text{gauge-fix}} = -\frac{1}{2\xi} \left(\partial_{\mu} B^{\mu} + \frac{\xi}{2} g' v \varphi_3 \right)^2 - \frac{1}{\xi} \operatorname{Tr} \left\{ \left(\hat{D}^{\mu}_{W} W_{\mu} - \frac{\xi}{2} g v \hat{U} \varphi \hat{U}^{\dagger} \right)^2 \right\}$$

- \bullet The terms proportional to φ will make the next steps easier.
- Later, we will set $\xi = 1$.

Dittmaier/Grosse-Knetter [hep-ph/9505266,NPB]

'81

$\left|\frac{1}{12}\Lambda^{\mu\nu}\Lambda_{\mu\nu} + \frac{1}{2}\Sigma^{2}\right|$ II: ... and Super-Heat-Kernel Expansion...

evaluating the one-loop functional

$$e^{iW_{L=1}} = \int [d\phi d\psi d\bar{\psi}] e^{iS^{(2)}[\hat{\phi},\hat{\psi},\hat{\psi};\phi,\psi,\bar{\psi}]}$$

$$S^{(2)} = \frac{1}{2}\phi A\phi + \bar{\psi}B\psi + \phi\bar{\Gamma}\psi + \bar{\psi}\Gamma\phi$$

$$W_{L=1} = \frac{i}{2}\operatorname{Tr}\ln A - i\operatorname{Tr}\ln B - \frac{i}{2}\sum_{n=0}^{\infty}\frac{1}{n}\operatorname{Tr}\left(A^{-1}\bar{\Gamma}B^{-1}\Gamma - A^{-1}\Gamma^{T}B^{-1,T}\bar{\Gamma}^{T}\right)^{n}$$

Claudius Krause (Fermilab)

Higgs EFTs and their Renormalization

$$\frac{1}{12}\Lambda^{\mu\nu}\Lambda_{\mu\nu} + \frac{1}{2}\Sigma^2$$
 II: ... and Super-Heat-Kernel Expansion...

Introducing supermatrix algebra:

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

 $Neufeld/Gasser/Ecker\ [hep-ph/9806436, PLB]$

Sdet
$$M = \det (a - bd^{-1}c) \det d^{-1}$$

Str $M = \operatorname{Tr} a - \operatorname{Tr} d$
Sdet $M = e^{\operatorname{Str} \ln M}$

$$\frac{1}{12}\Lambda^{\mu\nu}\Lambda_{\mu\nu} + \frac{1}{2}\Sigma^2$$
 II: ... and Super-Heat-Kernel Expansion...

Introducing supermatrix algebra:

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Sdet $M = \det (a - bd^{-1}c) \det d^{-1}$ Str $M = \operatorname{Tr} a - \operatorname{Tr} d$ Sdet $M = e^{\operatorname{Str} \ln M}$

Neufeld/Gasser/Ecker [hep-ph/9806436,PLB]

The one-loop functional of $S^{(2)} = \frac{1}{2}\phi A\phi + \bar{\psi}B\psi + \phi\bar{\Gamma}\psi + \bar{\psi}\Gamma\phi$ becomes:

$$W_{L=1} = \frac{i}{2} \operatorname{Str} \ln \Delta, \qquad \Delta = \begin{pmatrix} A & \overline{\Gamma} & -\Gamma^T \\ -\overline{\Gamma}^T & 0 & -B^T \\ \Gamma & B & 0 \end{pmatrix}$$

$\frac{1}{12}\Lambda^{\mu\nu}\Lambda_{\mu\nu} + \frac{1}{2}\Sigma^2$ II: ... and Super-Heat-Kernel Expansion...

Applying the Heat-Kernel Expansion:

Donoghue/Golowich/Holstein '92

Neufeld/Gasser/Ecker hep-ph/9806436

$$W_{L=1} = \frac{i}{2} \operatorname{Str} \ln \Delta$$
$$= -\frac{i}{2} \int_0^\infty \frac{d\tau}{\tau} \int d^d x \operatorname{str} \langle x | e^{-\tau \Delta} | x \rangle$$

with the expansion in Seeley-DeWitt coefficients

$$\langle x|e^{-\tau\Delta}|x\rangle = \frac{i}{(4\pi)^{d/2}}\frac{e^{-\tau m^2}}{\tau^{d/2}}\sum_{n=0}^{\infty}a_n(x)\tau^n$$

$\frac{1}{12}\Lambda^{\mu\nu}\Lambda_{\mu\nu} + \frac{1}{2}\Sigma^2$ II: ... and Super-Heat-Kernel Expansion...

Applying the Heat-Kernel Expansion:

Donoghue/Golowich/Holstein '92

Neufeld/Gasser/Ecker hep-ph/9806436

$$W_{L=1} = \frac{i}{2} \operatorname{Str} \ln \Delta$$
$$= -\frac{i}{2} \int_0^\infty \frac{d\tau}{\tau} \int d^d x \operatorname{str} \langle x | e^{-\tau \Delta} | x \rangle$$

with the expansion in Seeley-DeWitt coefficients

$$\langle x|e^{-\tau\Delta}|x\rangle = \frac{i}{(4\pi)^{d/2}}\frac{e^{-\tau m^2}}{\tau^{d/2}}\sum_{n=0}^{\infty}a_n(x)\tau^n$$

- The a_n can be computed, knowing the form of Δ .
- The UV-divergences of $W_{L=1}$ are the poles in $\frac{1}{\tau}$.
 - \Rightarrow only a_2 contributes!

$$\frac{1}{12}\Lambda^{\mu\nu}\Lambda_{\mu\nu} + \frac{1}{2}\Sigma^2$$
 II: ... and Super-Heat-Kernel Expansion...

The Heat-Kernel Expansion extracts the $\frac{1}{\epsilon}$ -poles of $W_{L=1}$.

$$\frac{1}{12}\Lambda^{\mu\nu}\Lambda_{\mu\nu} + \frac{1}{2}\Sigma^2$$
 II: ... and Super-Heat-Kernel Expansion...

The Heat-Kernel Expansion extracts the $\frac{1}{\epsilon}$ -poles of $W_{L=1}$.

Donoghue/Golowich/Holstein '92; Neufeld/Gasser/Ecker [hep-ph/9806436,PLB] $\Delta = (\partial_{\mu} + \Lambda_{\mu}) (\partial^{\mu} + \Lambda^{\mu}) + \Sigma$

we get

With

$$\begin{split} W_{L=1,di\nu} &= \frac{1}{32\pi^{2}\epsilon} \int d^{4}x \, \text{str} \left[\frac{1}{12} \Lambda_{\mu\nu} \Lambda^{\mu\nu} + \frac{1}{2} \Sigma \Sigma \right] . \\ \Lambda_{\mu\nu} &= \partial_{\mu} \Lambda_{\nu} - \partial_{\nu} \Lambda_{\mu} + [\Lambda_{\mu}, \Lambda_{\nu}] \end{split}$$

- Specifying the Dirac structure of $S^{(2)}$, we can further evaluate the Dirac-traces.
- The resulting Master-Formula is purely algebraic (Matrix multiplication and traces). 'tHooft '73,NPB

$\frac{1}{12}\Lambda^{\mu\nu}\Lambda_{\mu\nu} + \frac{1}{2}\Sigma^2$ II: ... to find the Master Formula.

In the SM (and the $EWCh\mathcal{L}$), we have

$$\mathcal{L}_{2}^{\mathsf{SM}} = -\frac{1}{2}\phi^{i}\mathsf{A}_{i}^{j}\phi_{j} + \bar{\chi}\left(i\partial \!\!\!/ - \mathsf{G}\right)\chi + \bar{\chi}\Gamma^{i}\phi_{i} + \phi^{i}\bar{\Gamma}_{i}\chi,$$

with $A = (\partial^{\mu} + N^{\mu})(\partial_{\mu} + N_{\mu}) + Y$ and $G \equiv (r + \rho_{\mu}\gamma^{\mu})P_{R} + (I + \lambda_{\mu}\gamma^{\mu})P_{L}$.

This gives $\mathcal{L}_{\rm div}^{\rm SM} = \frac{1}{32\pi^2\varepsilon} \left(\text{ tr } \left| \frac{1}{12} N^{\mu\nu} N_{\mu\nu} + \frac{1}{2} Y^2 - \frac{1}{3} \left(\lambda^{\mu\nu} \lambda_{\mu\nu} + \rho^{\mu\nu} \rho_{\mu\nu} \right) \right|$ + tr $[2D^{\mu}ID_{\mu}r - 2IrIr] + \bar{\Gamma}\left(i\partial + i\partial + \frac{1}{2}\gamma^{\mu}G\gamma_{\mu}\right)\Gamma$ with $N_{\mu\nu} \equiv \partial_{\mu}N_{\nu} - \partial_{\nu}N_{\mu} + [N_{\mu}, N_{\nu}],$ $\lambda_{\mu\nu} \equiv \partial_{\mu}\lambda_{\nu} - \partial_{\nu}\lambda_{\mu} + i[\lambda_{\mu}, \lambda_{\nu}], \qquad \rho_{\mu\nu} \equiv \partial_{\mu}\rho_{\nu} - \partial_{\nu}\rho_{\mu} + i[\rho_{\mu}, \rho_{\nu}],$ $D_{\mu}I \equiv \partial_{\mu}I + i\rho_{\mu}I - iI\lambda_{\mu}, \qquad D_{\mu}r \equiv \partial_{\mu}r + i\lambda_{\mu}r - ir\rho_{\mu}.$ 'tHooft '73,NPB; Buchalla/Catà/Celis/Knecht/CK [1710.06412,NPB]

$\frac{1}{12}\Lambda^{\mu\nu}\Lambda_{\mu\nu} + \frac{1}{2}\Sigma^2$ II: ... to find the Master Formula.

Buchalla/Celis/CK/Toelstede [1904.07840]

Higgs Effective Field Theories and their Renormalization

Part I: The two Higgs Effective Field Theories [1307.5017,1412.6356,1803.00939]

$$\left[rac{1}{12}\Lambda^{\mu
u}\Lambda_{\mu
u}+rac{1}{2}\Sigma^{2}
ight]$$

Part II: The Master Formula for 1-loop divergences [1710.06412,1904.07840]

Part III: The Application to Higgs EFTs [1710.06412,1904.07840]

III: Renormalization of the SMEFT

Cross checks:

Buchalla/Celis/CK/Toelstede [1904.07840]

- We reproduce the results of the bosonic sector of Alonso/Jenkins/Manohar/Trott [1308.2627,1310.4838,1312.2014,JHEP]
- We performed 3.x independent computations.

III: Renormalization of the SMEFT

Cross checks:

Buchalla/Celis/CK/Toelstede [1904.07840]

- We reproduce the results of the bosonic sector of Alonso/Jenkins/Manohar/Trott [1308.2627,1310.4838,1312.2014,JHEP]
- We performed 3.x independent computations.

The result:

- suggests the completeness of the NLO basis. Grzadkowski/Iskrzynski/Misiak/Rosiek [1008.4884,JHEP]
- confirms the running and mixing of the NLO operators. Alonso/Jenkins/Manohar/Trott [1308.2627,1310.4838,1312.2014,JHEP]

III: Renormalization of the SMEFT

Cross checks:

Buchalla/Catà/Celis/Knecht/CK [1710.06412,NPB]

- We reproduce previous results of the Scalar sector. Guo/Ruiz-Femenía/Sanz-Cillero, Phys. Rev. D 92 (2015) 074005, arXiv:1506.04204
- We reproduce the SM- β -functions in the SM-limit.
- We performed 4.x independent computations with 2 different choices of $\mathcal{L}_{gauge-fix}$.

Cross checks:

Buchalla/Catà/Celis/Knecht/CK [1710.06412,NPB]

- We reproduce previous results of the Scalar sector. Guo/Ruiz-Femenía/Sanz-Cillero, Phys. Rev. D 92 (2015) 074005, arXiv:1506.04204
- We reproduce the SM- β -functions in the SM-limit.
- We performed 4.x independent computations with 2 different choices of $\mathcal{L}_{gauge-fix}$.

The result:

see also Alonso et al., arXiv:1710.06848, PRD

- confirms the predictions by power counting. Buchalla/Catà/CK, Phys. Lett. B 731 (2014) 80, arXiv:1312.5624
- is consistent with the operator basis.

Buchalla/Catà/CK, Nucl. Phys. B 880 (2014) 552, arXiv:1307.5017

Higgs Effective Field Theories and their Renormalization — Summary —

- I introduced two EFTs for physics beyond the SM: the (decoupling) SMEFT and the (nondecoupling) *EWChL*
- I showed how the two EFTs are related to each other.

Higgs Effective Field Theories and their Renormalization — Summary —

- I introduced two EFTs for physics beyond the SM: the (decoupling) SMEFT and the (nondecoupling) *EWChL*
- I showed how the two EFTs are related to each other.
- I derived a master formula for the $1/\epsilon$ -poles of a given Lagrangian, based on the super-heat-kernel. $\boxed{\frac{1}{12}\Lambda^{\mu\nu}\Lambda_{\mu\nu} + \frac{1}{2}\Sigma^2}$
- The result is purely algebraic (matrix multiplication and -tracing).

Higgs Effective Field Theories and their Renormalization — Summary —

- I introduced two EFTs for physics beyond the SM: the (decoupling) SMEFT and the (nondecoupling) *EWChL*
- I showed how the two EFTs are related to each other.
- I derived a master formula for the $1/\epsilon$ -poles of a given Lagrangian, based on the super-heat-kernel. $\boxed{\frac{1}{12}\Lambda^{\mu\nu}\Lambda_{\mu\nu} + \frac{1}{2}\Sigma^2}$
- The result is purely algebraic (matrix multiplication and -tracing).
- For the SMEFT, we confirmed the RGE results of the bosonic sector.
- For the *EWChL*, we computed the 1-loop RGEs and confirmed the NLO basis.

Backup

Naive Dimensional Analysis (NDA)

```
Naive dimensional analysis - NDA:
```

Georgi, Manohar ['84 NPB]; Georgi [hep-ph/9207278]

- Overall factor $f^2 \Lambda^2$, f^{-1} for each strongly interacting field, Λ^{-1} to reach dimension 4.
- It is consistent with our counting only if internal gauge lines and Yukawa interactions are neglected.

• It gives a wrong scaling in some cases, e.g. $F_{\mu\nu}F^{\mu\nu}$.

There is a relation between the electroweak chiral Lagrangian and the κ framework.

 $\kappa_i^2 = \Gamma^i / \Gamma_{SM}^i, \quad \kappa_i^2 = \sigma^i / \sigma_{SM}^i$ **EWCh**L LHCHXSWG [1209.0040,1307.1347] tree: $C_{t,b,\tau}$ C_V tree: $\kappa_{t,b,\tau}$ κ_V 1-loop: 1-loop: $C_{t,b,\tau}$ $\kappa_{\gamma,g}$

The κ framework cannot be recovered as a limit of the SMEFT (dim 6).

Full dimension 6 Grzadkowski et al. [1008.4884, JHEP]:

example: $h o Z\gamma$

Additional assumption of weakly coupled UV Einhorn/Wudka[1307.0478]:

LO:

The Minimal Composite Higgs Model

Agashe et al. [hep-ph/0412089,NPB], Contino et al. [hep-ph/0612048,PRD]

- global symmetry spontaneoulsy broken at scale $f: SO(5) \rightarrow SO(4)$
- $SU(2)_L \times U(1)_Y \subset SO(4)$ is gauged
- ightarrow massive W^{\pm}/Z , light h

With
$$|h|U \equiv \begin{pmatrix} h_4 + ih_3 & h_2 + ih_1 \\ -(h_2 - ih_1) & h_4 - ih_3 \end{pmatrix} = (\widetilde{\phi}, \phi)$$
 we find:
$$\mathcal{L}_{kin} = \frac{1}{2} \partial_\mu |h| \partial^\mu |h| + \frac{f^2}{4} \langle D_\mu U D^\mu U^\dagger \rangle (\sin |h|/f)^2$$

The Minimal Composite Higgs Model

Agashe et al. [hep-ph/0412089,NPB], Contino et al. [hep-ph/0612048,PRD]

de Blas/Eberhardt/CK [1803.00939,JHEP]

An Example, the SM Singlet Extension $\mathcal{L}_{SM+S} = \mathcal{L}_{SM} + \partial^{\mu}S\partial_{\mu}S + \frac{\mu_{2}^{2}}{2}S^{2} - \frac{\lambda_{2}}{4}S^{4} - \frac{\lambda_{3}}{2}\phi^{\dagger}\phi S^{2}$ S: real scalar singlet with Z_2 symmetry Schabinger/Wells [hep-ph/0509209], Patt/Wilczek [hep-ph/0605188], Robens/Stefaniak [1601.07880], Englert/Plehn/Zerwas/Zerwas [1106.3097], Buttazzo/Sala/Tesi [1505.05488], Freitas/López-Val/Plehn [1607.08251] In physical parameters: $m, v, M, \sin \chi$, and $\xi = \frac{v^2}{r^2} = \frac{v^2}{v^2 + v^2}$ $V(h, H) = \frac{1}{2}m^{2}h^{2} + \frac{1}{2}M^{2}H^{2} - d_{1}h^{3} - d_{2}h^{2}H - d_{3}hH^{2} - d_{4}H^{3}$ $-z_1h^4 - z_2h^3H - z_3h^2H^2 - z_4hH^3 - z_5H^4$ $d_i = d_i(m^2, M^2, v, \xi, \sin \chi), \quad z_i = z_i(m^2, M^2, v, \xi, \sin \chi)$

We distinguish 2 possible hierarchies.

Integrate out *H*: solve equation of motion

$$H = H_0 + \frac{H_1}{M} + \frac{H_2}{M^2} + \dots$$

Case a), strong coupling, generates the *EWChL*.

$$H = H_0 + \frac{H_1}{M} + \frac{H_2}{M^2} + \dots$$

$$H_{0} = H_{0}(h) = H_{0,2} \left(\frac{h}{v}\right)^{2} + H_{0,3} \left(\frac{h}{v}\right)^{3} + H_{0,4} \left(\frac{h}{v}\right)^{4} + \dots$$
(closed-form solution to all orders in *h*)
No $\frac{1}{M}$ suppression, but arbitrarily high canonical dimension
Expansion in chiral dimensions $\rightarrow EWCh\mathcal{L}$

(6)

$$\mathcal{L}_{\text{LO}} = \mathcal{L}_{\text{kin}} - v(n) + \mathcal{L}_{\text{Yuk}}(n) + \frac{v^2}{4} \langle (D_{\mu}U)(D^{\mu}U^{\dagger}) \rangle (1 + F_U(h))$$

NLO
$$(1/M^2)$$
:

 $\mathcal{O}_{D1}, \mathcal{O}_{D7}, \mathcal{O}_{D11}, \dots$ of Buchalla/Catà/CK [1307.5017,NPB]

Case b), weak coupling, generates the SMEFT.

$$H = H_0 + \frac{H_1}{M} + \frac{H_2}{M^2} + \dots$$

$$H_0 = 0, \qquad H_1 = -\frac{\lambda_3 v_H}{2M} \phi^{\dagger} \phi$$

 \rightarrow Always $\frac{1}{M}$ suppression

 $\rightarrow\,$ Expansion in canonical dimensions $\rightarrow\,$ SMEFT

LO:

SM with renormalized couplings

NLO
$$(1/M^2)$$
:
 $\mathcal{L}_{NLO} = \frac{1}{4} \frac{\lambda_3^2}{\lambda_2 M^2} \partial^{\mu} (\phi^{\dagger} \phi) \partial_{\mu} (\phi^{\dagger} \phi)$

The physical picture helps to relate the two EFTs.

Renormalization of SMEFT, an explicit example

Starting from

$$\mathcal{Q}_{\phi} = \left(\phi^{\dagger}\phi\right)^3 = \frac{1}{8} \left(\varphi_i \varphi_i\right)^3,$$

we find

ν

$$a_{ij}^{\mu
u} = 0, \qquad b_{ij}^{\mu} = 0, \qquad c_{ij} = -\frac{3}{4}(\hat{\varphi}_a\hat{\varphi}_a)^2\delta_{ij} - 3(\hat{\varphi}_a\hat{\varphi}_a)\hat{\varphi}_i\hat{\varphi}_j,$$

 $b_{ij} = \left(\left(\frac{\lambda}{2} + \frac{g^2}{4}\right)\hat{\varphi}_a\hat{\varphi}_a - m^2\right)\delta_{ij} + \left(\lambda - \frac{g^2}{4}\right)\hat{\varphi}_i\hat{\varphi}_j - g'^2(t_R^3\hat{\varphi})_i(t_R^3\hat{\varphi})_j.$

Therefore

$$\operatorname{tr} cY = -\left(54\lambda + \frac{9}{2}g^2 + \frac{3}{2}g'^2\right)\left(\phi^{\dagger}\phi\right)^3 + 24m^2\left(\phi^{\dagger}\phi\right)^2$$

gives with $K_{(\phi)}=6(3g^2+g'^2-\gamma_\phi)$

$$eta_\phi \supseteq \left(54\lambda - rac{27}{2}g^2 - rac{9}{2}g'^2 + 6\gamma_\phi
ight)C_\phi, \qquad ext{and} \qquad eta_\lambda \supseteq 48rac{m^2}{\Lambda^2}C_\phi.$$